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Abstract

While lots of reading happens on mobile devices, little research
has been performed on how the reading-interaction actually takes
place. Therefore we describe our findings on a study conducted
with 18 users which were asked to read a number of texts while their
touch and gaze data was being recorded. We found three reader
types and identified their preferred alignment of text on the screen.
Based on our findings we are able to computationally estimate the
reading area with an approximate .81 precision and .89 recall. Our
computed reading speed estimate has an average 10.9% wpm error
in contrast to the measured speed, and combining both techniques
we can pinpoint the reading location at a given time with an overall
word error of 9.26 words, or about three lines of text on our device.
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1 Introduction

Recently the sales of digital books began to surpass the number
of paper sales [Miller and Bosman 2011] and probably this trend
will not reverse. While reading and interacting with web sites or
PDFs on desktop PCs has become very common, the trend to mo-
bile reading devices is quite new. Tablets, cell phones and dedi-
cated ebook readers appear to become the device-of-choice, and a
variety of them manifested during the last months and years. With
them arrive new interaction paradigms [Shneiderman 1991], and
traditional keyboard-mouse interaction is more and more replaced
by small, touch-sensitive fullscreen reading devices. At the same
time, traditional eye tracking and reading research [Rayner 1998]
has shown that by taking into account gaze and interaction data
and putting them into relation with the displayed content, there is
a considerable potential for improving human-computer interaction
techniques [Biedert et al. 2010b][Buscher 2010]. There have been
interaction [Drewes et al. 2007] and reading [Oquist and Lundin
2007] studies on traditional cell phones and we believe on top of
that touch interface with smoothly scrollable screens offer some
unique insights and interaction possibilities. For this paper our
goals are therefore twofold. First we want to explore how the read-
ing interaction usually takes place on these devices, especially in
terms of eye movements and touch behavior. Second we want to
investigate to what extent we can approximate the reader’s current
focus of attention (i.e., the read text) by analyzing the available in-
puts. Such an approximation can enable us to provide eyeBook
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Figure 1: A user reading texts on a mobile phone while being eye
tracked. While he reads, the current touch and gaze information
is being recorded as well as the screen’s content for a later analy-
sis. Notice that the tracking device is flipped and all calibration is
performed directly on the smart phone.

[Biedert et al. 2010a] like ambient reading effects on existing hard-
ware without the need for expensive eye tracking equipment. If
properly estimated interaction data is being considered for many
users, it also could give valuable insights on possible problematic
passages within the text [Biedert et al. 2012].

2 Setup

In order to correlate eye tracking data with scroll and touch infor-
mation we need to integrate an eye tracking device into our interac-
tion scenario. For the purpose of our study we use a Nexus One as
the actual presentation device, which contains a 480x800px display
with a screen diagonal of 94mm. It also has a capacitive touch sen-
sor, a built-in HTML rendering engine and WiFi networking facili-
ties, and we rely on all of them for the creation of our experimental
application. For the purpose of our study the devices is fixed on a
table and used in portrait mode.

As the tracking device we use a Tobii X120 unit which we inte-
grated in a novel setup, allowing us to calibrate and record eye
tracking data without the need of external cameras. For that we
mount the unit head-down (compare Figure 1) to ensure that it can
properly track the user’s eye which when looking at the device
which is placed below the tracker. Furthermore, the incoming gaze
data needs then to be post-processed to match the flipped order of
axes.

3 Experiment

Using the setup described in the previous section we conducted a
user study to investigate how people actually interact with mobile
devices. We drafted 18 students from the local university, 13 male,
5 female, all aged between 18 and 28 years, most of them were
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computer science students and all of them had German as their na-
tive language. We also surveyed the user for previous smartphone
experience and 8 users reported they had used or do use such de-
vices, and all were given time to familiarize with the device.

The participants were told to participate in a reading comprehen-
sion study. We asked them to read three HTML documents on the
topics of cosmetics (D1), biology (D2) and gardening (D3), excerpts
from ’excellent’ German Wikipedia articles, and answer a number
of questions afterwards. The texts were about 530 words each, with
different paragraph lengths on average (9, 12 and 15 screen lines per
paragraph, respectively). The whole device could display approxi-
mately 15 lines of text and a single line contained approximately 5
words.

After the instructions were given the users familiarized themselves
with the device. Eventually the eye tracker was calibrated and the
actual experiment started with the documents presented in random
order.

4 Evaluation

Using the data acquired in the experiment we start by analyzing a
number of principal questions and eventually investigate how well
the true reading position can be estimated by heuristics based on
touching and scrolling behavior.

4.1 General Definitions

On the display of the device, a document Di is presented to the
reader. More specifically, at each moment t ∈ T during the docu-
ment interaction time T only a part of the document p(t) is visible
on the screen. There are two major ways to represent the viewport
(the visible area of the document): a pixel-based variant that maps
to two y-coordinates (y and y + 800), and a character-based variant
that maps to two character offsets (o1 and o2, the offsets that were
fully visible in the upper left and lower right part of the screen at t),
counted from the start of the text. With the help of p we segment our
recordings into two classes, namely reading phases and a scrolling
phases. As reading we consider phases ri ⊆ T with p′(ri) = {0}
(i.e., the first derivation of p) and ∆ri > 2s, i.e., where the content
of the screen stood still for more than 2 seconds (a value empirically
found when analyzing the recordings). We consider each block of
time that does not form a reading phase as a scrolling phase si, and
for each document interaction timeline we now have a partition into
the set R of all reading phases and a set S of all scrolling phases.
In addition to the scroll movements we also recorded gaze data g(t)
and touch data f (t), and similar to p their values can be interpreted
as raw screen position or character offsets in the document.

4.2 General Behavior and Gaze Distribution

We start by describing the overall distribution of reading areas.
Since previous research has indicated that favored reading areas
might exist on desktop screens [Buscher et al. 2010] the main ques-
tion in this part is whether they also exist on small screens where
only a very limited number of lines can be displayed at a time.

Visually inspecting the overall scrolling behavior (compare Figure
2 for a general overview) we noticed three general classes of read-
ers. Four of our readers employed a reading pattern that is mostly
page-wise, i.e., they read one page more or less completely and then
scroll so that all the screen’s content is replaced with new text. In
contrast, four others exhibited mainly line by line reading behav-
ior in which they tend to focus on a single or very few lines on the
screen. They scroll almost constantly to keep new information flow-
ing into that preferred area. The majority of our users (10) however
preferred mostly blockwise scrolling, in which they changed only
parts of the screen with each scrolling phase.
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Figure 2: Heat map with the general distribution of gaze data for
all users and all documents. Although no top or bottom bar were
present not the full height of the screen was generally being used.

It should be noted that these modes are not strict. Individually also a
mixing of different behaviors can be observed, such as when a para-
graph does not fit into the entire screen it is read on a line-by-line
basis, and when another can be fit again, the reading pattern changes
back to a blockwise mode. When looking only at the mostly non-
fullscreen readers and investigating their average gaze distribution
over the whole document, preferred reading regions can also be ob-
served here. While the average upper placement position was rang-
ing between 8% and 15% screen height we could notice that with
an increase of average paragraph length the reading bounds shifted
outwards. It appears that this is caused by the general preference of
these readers to align paragraphs so that they can be read in whole.

4.3 Correlation of Touch and Gaze

We also investigate to what extent gaze and touch behavior cor-
relate. The main question is whether the touch-down or touch-up
position, i.e., the vertical position where the finger touched or left
the screen for a swipe, related directly to the reading bounds. From
a coarse view the test group can be separated in a small group of
3 people out of 18 which used a dedicated portion of the screen
for short and more frequent scrolling. The remaining users usually
used the full length of the screen. In addition there is the obvi-
ous finding that all right handed persons used the right side of the
screen, while all left handed persons used the left side of the screen.
Overall each participant had an individual swipe pattern which was
uniquely distinguishable from the other patterns.
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The first analysis indicates that the majority performed their touch
movements within the middle 80% of their individual reading area
with a noticeable scatter increasing from the touch-up (µ = 448px)
and touch-down (µ = 152px) region. For further investigation the
Pearson correlation coefficient between the measurement parame-
ters were calculated resulting in a very low correlation of r = .094
for the touch-down position and the bottom bound of the reading
area. The same applied to the touch-up position and the top bound
of the reading area r = .164.

4.4 Locating the Reading Area

In order to estimate the actual reading position we first have to de-
termine which part of the screen we actually consider for its com-
putation. We base our algorithm on two key observations: First,
the non-fullscreen users mostly seem to ignore the upper and lower
parts of the screen in general. Second, users instead tend to align
paragraphs so that they can be read in total. We combine both ob-
servations into our area estimator a(ri). Given a reading slice ri we
analyze the document content within p(ri) and locate the paragraph
with the start location most proximate to y = 120px (which is equal
to 15% screen height). If the entire paragraph fits onto the screen,
we assume its bounds to be the reading area, otherwise we assume
the remaining part of the screen to be the reading area.

In order to evaluate this heuristic, we excluded the data of full
screen readers (for which the bounds are obviously known, and
which can be detected automatically since their p(ri) results are
non-overlapping) and line-wise readers (which we deemed to be
too difficult and which can probably be detected automatically by
an analysis of their ∆ri : ∆si+1 ratios) we considered the remaining
blockwise readers that had sufficiently good eye tracking (7 total1)
data. For these we compared the computed regions with the ac-
tually measured gaze regions as defined by the highest and lowest
fixation in g(ri). The results of this analysis can be seen in Figure
3 in which we plotted the precision and recall values of the area
of the true reading regions compared against the estimated reading
regions. Overall we achieve a precision of .81 and a recall of .89
for the true reading regions. A precision of 1.0 means that all of the
estimated reading area was actually read, a recall of 1.0 that all of
the area that really was used for reading was also being detected as
such.
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Figure 3: Precision-recall map of the computed reading areas, in
contrast to the real reading areas for all users and all documents.

1Apparently our number of dropouts (3 of effectively 10) is approxi-
mately in the range of the numbers reported in [Oquist and Lundin 2007],
which was 4 of 16. We considered data to be good when it could be matched
to the text in most cases.

4.5 Estimating the Reading Speed

The main assumption in the computation of the reading speed is
that it is approximately constant within one ri slice. While in reality
the fixation and saccade pattern is influenced by many factors, the
actual slices are our atomic observation unit and therefore we take
the a priori assumption that the time spent in each part of it is evenly
distributed. Thus, for the estimation of the reading speed of given
slice ri we considered the amount of text available within a(ri) and
the time ∆ri this text was available. This is simply the number
of words within that area divided by the time taken for the area,
v∗(ri) = a(ri) : ∆ri

For estimating reading speed, we measured how many words were
presented between the first and last fixations of a given reading
slice and also the time the slice was displayed. Comparing both
readings we can observe an average error rate of about 17.6% in
terms of words per minute. Overall we measured real average read-
ing speeds in the range from 174 wpm to 272 wpm per session2,
and the errors reported for the individual users varied quite widely.
However, when comparing the relative errors our algorithm pro-
duced between the three documents, we could not find a significant
difference (p = .55) on a Kruskal-Wallis test. In general the com-
putation appears to have the slight tendency to underestimate the
true reading speed.
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Figure 4: Relative errors when estimating the current speed per
user. While the inter-document differences were not significant, the
differences between users vary quite widely.

In terms of realtime computation the presented numbers can only
be computed for the previous slice since they require knowledge
for how long the slice has been presented. Thus we estimate the
most likely current speed to be the moving average of all previously
observed slices, hence vi = �{ v∗(r j) } for all j < i . Using vi instead
of v∗(ri) for a comparison against the actual reading speed yields an
even better estimate and achieved a 10.9% total average wpm error,
compare Figure 4.

4.6 Pinpointing the Reading Position

Based on the estimation of the reading bounds and the approx-
imation of the current reading speed, we eventually try to esti-
mate the most likely reading location l for a given time. Taking
the currently displayed reading segment ri we measure the time
∆t elapsed since its start and compute an offset by multiplying it

2Our recorded reading speeds are above the reported speeds of 178 wpm
mentioned in [Oquist and Lundin 2007] for scrolling interfaces which can
probably be attributed to the differences in content (sci-fi prose vs. encyclo-
pedic articles), the language (Swedish vs. German) and the way the inter-
faces are operated and sized (small key-operated cell phone vs. relatively
large touch operated smart phone)
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Figure 5: Visualization of the data on all documents and all block-wise readers we were able to extract proper reading positions from. The
x-axis reflects the nth fixation, i.e., the time. The y-axis shows how many words the computed position was away from the real position. The
black line reflects the average error over all users and documents. It can be seen that, except for some outlines within two exceptionally
long document passes, there is no obvious trend for the accuracy to degrade over time. If there were a general user drift, the average should
increase within the latter parts.

with the average speed as described in the previous chapter, i.e.,
l(ri + ∆t) = a(ri) + vi∆t.

To evaluate the quality of this approach we compare the computed
position l with our actual eye tracking data g. We consider all fix-
ation events that occurred during reading slices ri and for each fix-
ation we compare the computed word offset against the true word
offset in the document. The overall average word error we achieve
is 9.26 words, with a standard deviation of 8.90 words. Investigat-
ing the overall error over time, compare Figure 5, there appears to
be no obvious trend for the algorithm to degrade in performance
over time. While individual measures can be far off (which can be
caused, for example, by accidental saccades to the other end of the
text) the average error after the nth fixation of runtime remains at
around 10 words. We also investigated the individual users and doc-
uments. The lowest average error we observed was 6.49 words for
one user and one document, the highest average error 16.02 words,
with standard deviations ranging from 4.39 to 10.67 words. Ex-
pressed in lines, our prediction was, on average, about 3 lines off
from the true reading position.

5 Conclusion & Outlook

We implemented a novel setup and investigated how text interaction
and reading are performed on a mobile touch screen device. Invit-
ing 18 users we had them read a number of documents and recorded
their gaze and touch behavior. We categorize our readers into three
types (full screen, linewise and blockwise) and find that blockwise
readers tend to align the read paragraph so that it fits on screen in
its entirety. Measuring their scrolling speed and modeling our find-
ings in an algorithm we are able to pinpoint their reading position
with an average accuracy of 10 words. There are also a number
of open questions. For example it is unclear how stable our clas-
sification into three reader groups actually is, whether it changes
over sessions, days or weeks, and if it changes or converges with
smartphone or touchscreen experience. Likewise the fit-to-screen
strategy could be verified in an independent experiment. Lastly we
can imagine that, although we could not find any obvious relation
in reading and touch positions in the scope of our experiment (be-
yond as a means for scrolling), there are some relations waiting to
be uncovered.
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